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ERRORS IN TEMPERATURE MEASUREMENT ON THE SURFACE OF A SOLID BODY USING

A THERMOCOUPLE WHEN HEATING AND COOLING FOLLOW AN ARBITRARY LAW

B. I. Makarov

ABSTRACT ;Zc;qﬁ?é

Equations are derived for determining errors in tempera-
ture measurement on the surface of a semi-infinite solid body
by means of a semi-artificial thermocouple, when heating and

cooling take place from some stationary temperature state in

accordance with an arbitrary law. /gz“fAdﬁ

Let us determine the measurement error which occurs whentemperature is 60%
measured with a semi-artificial thermocouple on the surface of a semi~infinite
solid body, an error produced by the heat flow along the electrode of the thermo-
couple. The thermal flux along the electrode produces a temperature field
which will be superimposed on the temperature field of a semi-infinite body,
and which will tend to distort it. This distortion of the temperature field
determines the error in the measurement of temperature. The thermal flux
along the electrode depends on the parameters of the electrode and on the

temperature at the contact area between the electrode and the body (which is

*Numbers given in the margin indicate the pagination in the original foreign =,

text.



measured with a thermocouple); therefore, the distorting temperature field and
the measurement error can be determined from the measured temperature inde-
pendently of the true temperature field of the body. The following assumptions
are made in the solution of this problem: the electrode is semi-infinite, the
coefficient of heat exchange on the surface of the electrode a is constant and
is the same for the entire surface, the temperature gradient along the cross
section of the electrode is absent, the thermal flux is constant along the
radius of the electrode Re and the surface of the body is thermally insulated
(this has practically no effect on the measurement error). We shall assume
that the temperature of the surrounding medium is egual to zero. At the
initial instant of time (T = 0) the electrode and the body will have a station-
ary temperature distribution different from O. The temperature field of the

electrode and the distorting temperature field in the body at the initial in-

stant of time are described by the following equations (ref. 1)
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where Me = TR Jo=r 0,V my (the origin of this particular codordinate system is at

the center of the areé—ef tangency between the electrode and the body). The
negative sign in equation (2) shows that the distorting temperature field
decreases the undistorted temperature field. After this the body will be
heated or cooled, and the temperature on the contact area will vary according
to an arbitrary law ty = ty + (1), where (1) will have a plus sign during
heating and a minus sign during cooling, while at the initial instant of time
it will be equal to O. The thermal flux on the contact area a(T) may be de-

termined by solving the equation of heat conductivity for the electrode
2
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To solve equation (3) we use the Laplace transformation with the initial
condition (1)
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The image of the thermal flux on the contact area is given by expression
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The distorting temperature field produced by the thermal flux can be
obtained by solving the equations of heat conductivity for the body, using

a cylindrical system of coordinates
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To solve equation (7) we use the initial condition (2) and the boundary

condition.
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and apply the integral transformation of Heinkel and Laplace. After this

the equation takes the form
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while the boundary conditions (8) is given by expressions
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The solution of equation (9), taking into account boundary conditions (10)

and equation (6) has the form
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Then, by applying the inverse Laplace and Heinkel transformation we find the
distorting temperature field. In the inverse Laplace transformation we
utilize the following equations, which establish a relationship between the

image and the original (ref. 2)
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then we obtain
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Replacing the integration variables and introducing criteria of
similarity Fo=a,%/R?, Bi=aR/r, By =1,R/r, k =!xVR,, & ==1/R,, k)'.:zil.'fA"k;-‘—'a,/ah

we obtain the following expression for the distorting temperature field
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The temperature measurement error is determined by the distortion of

the temperature field on the contact surface (x =0, r <R_)
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Thus, the temperature measurement error may be obtained by means of a
semi-artificial thermocouple for any instant of time using equation (15), if
we have a recorded temperature curve; in this case it is necessary to use the
temperature variation curve to construct the variation in its derivative as a
function of time. The analysis of eguation (15) shows that when the body is
heated from some stationary temperature state the measurement error will have
a negative sign, i.e., the undistorted temperature will be greater than the
measured temperature by the magnitude of this error. When the body is cooled,
two cases are possible: (1) the error has a negative sign and (2) the error
has & positive sign. In the first case the undistorted temperature is greater,
while in the second case it is less than the measured temperature. The error
sign during coocling depends on the rate of temperature change. If the initial
temperature of the electrode and of the body is equal to zero, i.e., tko = 0,
the measurement error is determined only by the first term of equation (15).
Symbols Used

R --electrode radius; tKo—-temperature on contact surface during sta-

A _=-coefficients of heat conductivity of

tionary temperature state; A, -

electrode and of body; o_., a.--coefficients of temperature conductivity of

e’ T

electrode and of body; @y, a--coefficients of heat exchange on surface of
electrode at initial moment of time and during middle of temperature measure-
ment interval; J, (v Ry)» Io (yr)--Bessel functions of first kind of first
and zero corder; a5 q(T)--thermal fluxes on contact surface at initial and
variable instants of time; erf u--probability integrals; F(s), Q(s)--Laplace

transformations of functions f£(r1) and q(T).
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Summary

The article is concerned with the measurement of temperature on surfaces
of solids by means of a semi-artificial thermocouple, involving an error due
to the heat transfer along the thermocouple electrode. An equation is de-
rived for determining the distorting temperature field due to heat transfer
along the electrode thermocouple, as well as an equation for computing the
temperature measurement area when a solid is heated or cooled from a certain
stationary temperature in an arbitrary manner. These equations determine
the actual undistorted temperature field from the field measured with a

thermocouple.
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